CLOUD OF THINGS
REST APIGUIDE

Version 1.7.2
Date 13.04.2018

LIFE IS FOR SHARING.

TABLE OF CONTENT

1. INTRODUCTION TO RESToitititiiesst ettt bbbttt e 3
L PR O =Y V=TT 3
1.2, USINGthe RESTINTEMACEScvivivitiritcctctccccct ettt bbbt bbb bbbt bbb b 3
1,30 USING POSIMAN ...ttt s et e+t 1+ bbbttt bbbttt b bbb 4
2. HELLO REST Lttt e e 6
2.1 OVBIVIBW. ittt ettt s bbb e b4 R bR R AR bR b bRttt b e 6
2.2, PrOIBOUISITES ..vivivivititeteteietet ettt ettt e b e et e e e e e ettt ettt ettt 6
2.3, DO e REST CallS.....iiiiieiiiiiiiiiiecteie ettt bbb bbb bbb s bbbt bbb 6
2.4, Create @ NEW DBVICE .uiviiiiieieiis ettt b s bbbt R et n e 6
2.5, TransmitmMeasuremM BNt ALcccciiiiiii bbb bbbt bbb 7
2.0, GO TUMNEE 11ttt R bbb n et 8
3. DEVICE INTEGRATION.cctttvttetett ettt ettt s bttt bbbttt bbbt 9
STt OVEBIVIBW. ..ttt ettt ettt bbb b bbb bbb bbb bbb bbb bbb bbb bbb et bbb s R Rt e b e bttt ettt ren 9
3.2, SHAMUD PRASE ettt bbb bbb bbbttt bbbt ettt 10
3.2.1. Step 0: Request device CredentialS.........oiiiiissss s s 10
3.2.2. Step 1:Checkif the deviceis already regiStered.........cciiiiiiiiicceeeeeeee s 11
3.2.3. Step 2:Create the deviCe in the INVENTOIY.......cciiiicccce e s 12
3.2.4, Step 3 RegiSIEr the GEVICE. ..ottt rs 13
3.2.5. Step 4:Update the device in e INVENTOIY.......cciiiiccee e s 14
3.2.6. Step 5: Discover child devices and create or update them in the INVENTOryccccecccccciicciiiiiie 14
3.3, WOrKiNg With ODEIAtIONS.viiiiiiicii ettt bbb bbb bbb b bbb bbb b bbb bbb s 15
3.3.1. Step 6: Finish operations and SUDSCIDE.c.cciiiiiceccs e s 15
Suh. CYCIE PRASE.iiiii ettt b bbbt b bbb bbb bbb b bbbt ettt ettt 17
341, Step 7:EXECUIE OPEIAtIONS......cviviiieiicic bbb bbbttt 18
3.4.2. Step B:UPAatBINVENTONY ...viiiicecece ettt bbbt r bbb bbbt rerers 18
3.4.3. Step 9: SeNAMBASUIBMENTSviviiiiii ettt bbbttt ettt ettt e et e bbbt rs 18
344, SEEP 10 SENA BVENTS ..vcviicecie et b bR bR bbbt e 19
345, SEEP 111 SENA BlAMNS ..ttt e 19
4, APPLICATION DEVELOPMENToovtttitsiit ettt sttt bbbttt 20
A1 OVBIVIBW. ... ivivitiietcte ettt s et b s h 4 bbb bbb 4 bbb s bbb s bbb bbb bbbt bbbt b s 20
4.2, REGISIEI ASSEESuiiiiiiiiiiieie ittt ettt ettt ettt ettt b bbb bbb bbb bbb bbb bbb bbb bbb bbbt et eb b et rs 20
4.3, LiNK ABVICES 10 @SSEES .uuviiiiiiiiiiiit sttt ettt b bbb bbb bbb bbb bbb bbb bbb bbbt r e e 22
4.4, Synchronize assets With eXternal SYSEM S ..ot e s 22
4.5, Query particular CAPabIlitIES.......cciiiiiiiiiii et 22
4.6, QUErYIeadiNngS frOM SEBNSOIS....viviiiiiiiicieieiet ettt b bbbt et ettt et b st r s e s s ebesererererers 23
4.7, Send OperationNS t0 ABVICES ...ttt b bbb b bbbt 24
4.8, LIStEN fOr BVENTS ..ottt r e 25
5. USING SMARTREST ..ottt b bbb bbb bbb bbb s bbb bbb b s st 27
D1 OVBIVIBW. vttt e ettt b bR e R Rttt 27
5.2, HOW d0ES SMAMREST WOIK? ...oviiieeeisi et 27
5.3. Thebasic SMartREST PrOt0COl ...ttt b bbb 28
5.4, How are templates regiStErEUcviiiieccce bbb 29
5.5, How are responses NaNAIBA?......c.ciiiicce bbb 30

1. INTRODUCTION TO REST

Thisisa guideline ofthe REST and SMARTREST protocols. It will explainhowto integrate a device into Cloud of Things and
howto develop an applicationfor Cloud of Things.

Note: If case of questions please contact cloudofthings@telekom.de.

1.1. OVERVIEW

Cloud of Things employs REST for all external communication. Regardless whether the communication originates from loT
devices, from web applications or from back office IT system s — the communication protocol is always REST.

REST isa very simple and secure protocolbased on HTTP(S)and TCP. Itistoday the de-facto Internet standard supported
by all networked programming environments ranging from very simple devices up to large-scale IT. One ofthe many books
introducing REST is RESTful Web Services.

Thisguide explainshowto use Cloudof Things' REST interfaces to:

e |Interface devices with Cloud of Things
e Develop applicationsontop of Cloud of Things
e Integrate other cloud services or IT backend applications with Cloud of Things.

It first shows you how to use the REST interfaces in general, then discusses device integration and finally it describes
application development. The descriptionis closely linked to the reference guide, which describes each interface in detail.
Relevant chaptersin the reference guide are in particular;

e REST implementationisthe reference for all general concepts
o Device management library specifiesthe data m odel for device management
e Sensor library specifiesthe datamodelfor sensors and controls.

If you develop using Java ME/SE, JavaScript or C/C++, please check the relevant developer's guides for even more

convenient access to Cloud of Things' functionality. Also, if you use any of the supported development boards, see the
corresponding "Devices" sectionfor more information.

1.2. USING THE REST INTERFACES

Most programming environments today have particularsupportfor REST-based communication. For experimentation and
for understanding REST interfaces, it is helpful to use one of the numerous available command line tools or browser
extensions.

Forexample, many operating systems come pre-installed with the "curl" command. If you wantto startbrowsing the APIs,
enteronacommand line;

$ curl -u <username>/<password> https://<yourURL>.ram.m2m.telekom.com/platform

Replace "username" and "password" with the username and password that you used to register to Cloud of Things. Similary,
replace "yourURL" with the URL you used at registration time.

The command will returnlinksto all basic interfaces of Cloud of Things:

EgE B N 3

mailto:cloudofthings@telekom.de
http://shop.oreilly.com/product/9780596529260.do
http://cumulocity.com/guides/rest/device-integration
http://cumulocity.com/guides/rest/application-development
http://cumulocity.com/guides/reference/rest-implementation
http://cumulocity.com/guides/reference/device-management
http://cumulocity.com/guides/reference/sensor-library

"inventory": {
"managedObjects" : {
"references": [],
"self": "https://<yourURL>/inventory/managedObjects"

b

"managedObjectsForFragment Type" :
"https://<yourURL>/inventory/managedObjects?fragmentType={ fragmentType}",

"managedObjectsForListOfIds" :
"https://<yourURL>/inventory/managedObjects?ids={ids}",

"managedObjectsForType" :
"https://<yourURL>/inventory/managedObjects?type={type}",

"self": "https://<yourURL>/inventory"
bo

To formatthe output more nicelyonaMac, try"curl... | python -mjson.tool".

From this point, you can navigate further. For example, display the itemsin the inventory by following the "managedObjects"
link:

$ curl -u <username>/<password> https://<yourURL>.ram.m2m.telekom.
com/inventory/managedObjects

You will notice that justa subset ofthe itemsin the inventoryisactually returned, a so-called "page".

1.3. USING POSTMAN

A convenient way to explore REST interface and the Cloud of Things database content are browser extensions such as
Postman or Advanced REST Client for Chrome. Ifyou wantto make use of them,download(Link)and installPostman. After
starting Postman, you can choose to either create an accountor click "Take me straightto the app". Then click the button
belowand choosethevariantof Postmanthat you have justinstalled. You may see abrowser securityprom pt asking you
whether you actually wantto run Postman (on Windows"Electron").

Now, click the"Collections" tab on the top left of Postman. You should see a folder " Cumulocity API" with the exam ples.
Openthatfolder and the sub-folder "Alarms", then click on "Get collection ofalarms".

mfjm = = 4

https://chrome.google.com/webstore/detail/postman-rest-client-packa/fhbjgbiflinjbdggehcddcbncdddomop?utm_source=chrome-ntp-launcher
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://www.getpostman.com/view-collection/7c7d00719ab238097686

@00 7

Collections g Basic Auth @ Demas~
¥ Cumulocity Public API REE<O Platform
» Alarm
» Audit {{host}}:{{port}}/platiorm GET H & URL params. & Headers (1)
¥ Cumulocity API Overview
@ Platform Authorization Basic YWRtaW46a2xhbnBp Add preset > Manage presets
3 arm ¥
=3 Audit
m Save Preview Pre-request script Tests Add to collection
{23 DeviceControl
@ E\del’\l Body STATUS EI/T.19 | etms
=3 Identity
E Inventory Pretty Raw Preview - Q H3 JSON ~ n Copy
(5] Measurement {
33 user - alarm: {

» DeviceControl - alarms:{
alarms: null,

p» Event self: "http:\/\/demos.cumulocity.com\/alarm\/alarms"

L

alarmsForSource: "http:\/\/demos.cumulocity.com\/alarm\/alarms?source=(source}",

It "http:\/\/dem loci m\/alarm\/alarms?source={source}&status=[status}",

» Identity

Here isa shortcutto setup Postman for Cloud of Things:

e Downloadthe Cloudof Things Postman collectionand click "Import collection" in Postman (or get it from the
Postman APl directory).

o Clickondrop-down menu nextto the little "eye" widget to configure your Cloudof Things URL. Click "Manage
environments" and "Add". Then type a name for your tenant and configure a key "url" with a value of
"https://<yoururl>.ram.m2m.telekom.com". Click "Submit".

e Now, you can run REST calls. Click, for example, on" Cloud of Things API", "Cloud of Things APl Overview", "GET
Platform". By clicking the "Send" button, you can send the GET requestto Cloud of Things. Thefirsttime thatyou
send a requestto Cloud of Things, you have to enter your credentials. Click on "Basic Auth" and enter your
username and password, followed by a click on "Refresh Headers".

o Toexplorethe API, click on thelinksin the responses. Similarto navigate through pages of results, click on the
"next" link atthe bottom of the response. Add, for exam ple, "?pageSize=100"to the end ofthe request URL to g et
more datathan the defaultfive items.

Note: Postmanhastwo issues: it always sends a contenttype even if you do not specify one. Ifyou see an error, please add
the "Content-Type"header describedin the reference manual. It also sometimes shows "Malformed JSON" as a response,
which isabugin Postman.

EgE B N 5

http://cumulocity.com/guides/rest/Cumulocity%20API.json.postman_collection
https://www.getpostman.com/collections/da85bbe3f176fbfb845b
https://www.bountysource.com/issues/3141137-malformed-json-with-a-200-ok-and-no-content

2. HELLO REST!

2.1. OVERVIEW

This section gives avery basic example howto create a device representation in Cloud of Things and subsequently how to
send related measurement data. All steps are performed by calling REST interfaces. Those REST calls are demonstrated by
CURL statements that can be executed on commandline.Please have alook on the previous section forashortintroduction
to CURL.

2.2. PREREQUISITES

In order to followthistutorial,check ifthe following prerequisites are fulfilled:
e Youhaveavalid tenant, user and password to access Cloud of Things
e Thecommand linetool CURLIisinstalled onyour system.

2.3. DO THE REST CALLS

We will now perform a sequence of justtwo REST calls, which are described in detail next:
e Step 1:Create a newdevice in the inventory of Cloud of Things
e Step 2: Transmit measurement data related to that device

In real world those steps are performed bythe 'device agent'. Step one is performed just once, whenthe device is connected
to Cloud of Thingsforthefirsttime. After that, actions related to that device can be performed by referencingthe device by
an internal ID which isreturned when executing this step.

2.3.1. CREATE ANEWDEVICE

To create a new device in the inventory of Cloud of Things the following REST request is needed:

POST /inventory/managedObjects HTTP/1.1

Content-Type: application/vnd.com.nsn.cumulocity.managedObject+json;
charset=UTF-8; ver=0.9

Accept: application/vnd.com.nsn.cumulocity.managedObject+json; charset=UTF -
8; ver=0.9

Authorization: Basic <<Base6t4 encoded credentials <tenant
ID>/<username>:<password> >>

{
"c8y IsDevice" : {},
"name" : "HelloWorldDevice"

Thiscall can be done by executing the following curl statement:

curl -v -u <username>:<password> \

-H 'Accept: application/vnd.com.nsn.cumulocity.managedObject+json;
charset=UTF-8; ver=0.9"' \

-H 'Content-type: application/vnd.com.nsn.cumulocity.managedObject+json;
charset=UTF-8; ver=0.9"' \

-X POST \

http://cumulocity.com/guides/rest/introduction

Please replace <username>, <password>and <tenant-ID> with the appropriate credentials givento you when registering
with Cloud of Things. The same credentials used to accessthe Cloud of Things Web GUI can be used to executethe REST
calls.

You will receive aresponse like that:

When creating adevice, Cloud of Things generates an ID, whichis needed in further callsin order to reference the device.
We can find thisID as the "id" attribute-value pair in the response.

2.3.2. TRANSMIT MEASUREMENT DATA

Nowthe deviceiscreated, we can send measurement data. In our case, we will send atem perature measurementin the unit
of Celsiuswhich was collected on a certain time:

Please replace the id value with the appropriate value you received in the first step.

mfjm = = 7

Furthermore, you should update the time value to a recenttimestamp in order to make it easy to find back the measurement
on Cloud of Things Ul later.

curl -v -u <username>:<password> \

-H 'Accept: application/vnd.com.nsn.cumulocity.measurement+json;
charset=UTF-8; ver=0.9"' \

-H 'Content-type: application/vnd.com.nsn.cumnulocity.measurement+json;
charset=UTF-8; ver=0.9"' \

-X POST \

-d
'{"c8y TemperatureMeasurement":{"T":{"value":21.23,"unit":"C"}}, "time":"201
1-12—
15T13:00:00.123+02:00", "source": {"id":"1231234"},"type":"c8y PTCMeasurement
vv}l \

https://<tenant-ID>.ram.m2m.telekom.com/measurement /measurements/

Theresponseto thatrequest will look like this:

HTTP/1.1 201 Created
Content-Type: application/vnd.com.nsn.cumulocity.measurement+json;
charset=UTF-8; ver=0.9

{
"id": "4711",
"self": "https://<tenant-
ID>.ram.m2m. telekom.com/measurement/measurements/4711",
"source": {
"id": "1231234",
"self": "https://<tenant-
ID>. ram.m2m. telekom. com/inventory/managedObjects/1231234"
b
"time": "2014-12-15T12:00:00.123+01:00",

"type": "c8y PTCMeasurement",
"c8y TemperatureMeasurement": ({
"T " : {
"unit" : "c" .

"value" : 21.23

If you like to, you can repeat sending measurements. Before sendingthe request again, you should updatethe tim estamp
(value of attribute 'time')in orderto create atime series.

Nowyou are done. Enter Cloud of Things Web GUI, selectyour device on the "Alldevices" tab and move further to the

"Measurements" tab. Here you can see your measurement data. If not, change the filter setting to e.g. "lastweek" toinclude
thetimestamp you used in your submitted measurement.

2.4. GO FURTHER

The sequence of REST calls demonstrated hereisjust a shortened procedure of Device Integration. Thefirst step (‘create a
newdevice' and 'register device') ispart ofthe 'startup phase', whereas step two ('sending measurements') referencesto the
‘cycle phase'.

Please go further to the Device Integration section to getthe necessary information required forimplementing real-world
agents.

EgE B N 8

http://cumulocity.com/guides/rest/device-integration

3. DEVICE INTEGRATION

3.1. OVERVIEW

Thebasic life cycle forintegrating devicesinto Cloudof Thingsis discussed in Interfacing devices. In this section, we will
show how thislife cycleis implemented on REST level. The life cycle consists of two phases, astartup phase and a cycle
phase.

The startup phase is responsible for connecting the device to Cloud of Things andupdating the device datain the inventory.
It also performs cleanup tasks required for operations. It consists of the following steps:

e Step 0: Request device credentials, ifthey have not been requested yet.
o Step 1:Checkifthe deviceis already registered.
e Step 2:lfno, createthe device in the inventory and
e Step 3: Register the device.
e Step 4:Ifyes, updatethe devicein the inventory.
e Step 5: Discover child devicesand create or update them in the inventory.
Step 6: Finish operationsthat required a restart and subscribe to new operations.

o Request e . e Register
> : » Create device :
credentials " device
No No
Credentials o Device
Start > . "
available? registered?

Yes Yes o Update
"~ device

- o Operations:
6 Discover p"
; » Finish &
children i
z subscribe

The cycle phase follows. It continuously updates the inventory, writes measurements, alarms and events and executes
operationswhen required. It can be consideredto be the "mainloop" ofthe device which is executed until the device shuts
down. The loop consists of the following steps:

e Step 7:Execute operations.

e Step 8:Updateinventory.
Step 9: Send measurements.
Step 10: Send events.

e Step 11:Send alarms.

EgE B N 9

http://cumulocity.com/guides/concepts/interfacing-devices

Alarms Operations

Cycle

phase
Events

Inventory,
a updatec

Measurements

3.2. STARTUP PHASE

3.2.1. STEP 0: REQUEST DEVICE CREDENTIALS

Sinceevery requestto Cloud of Things needsto be authenticated, also requests from devices need to be authenticated. If
you want to assign individual credentials to devices, you can use the device credentials APl to generate new credentials
automatically. Todo so, request device credentials atfirst startup through the APl and store them locallyonthe device for
further requests.

The processworks as follows:

e Cloudof Things assumes each device to have someform of unique ID. Agooddevice identifiermaybethe MAC
address of the network adapter, the IMEI of amobile device or a hardware serial number

o When you take a newdeviceinto use, you enter thisunique ID into "Device registration"in Cloudof Things and
start the device.

e Thedevicewill connectto Cloud of Things and send its unique ID repeatedly. For this purpose, Cloud of Things
provides a static hostthat can be enquired from registration.cloud-of-things@telekom.de.

e You can acceptthe connection from the device in "Device registration", in whichcase Cloud of Things sends
generated credentials to the device.

e Thedevicewill usethese credentialsfor all further requests.

From device perspective, thisisasingle REST request:

POST /devicecontrol/deviceCredentials

Content-Type:
application/vnd.com.nsn.cumulocity.deviceCredentials+json;ver=...
Authorization: Basic ...

{
"id" : "0000000017b769d5"

}

The device issues thisrequest repeatedly. While the user hasnotyet registered and accepted the device, the requestreturns
"404 NotFound." Afterthe device is accepted, the followingresponseisreturned:

HTTP/1.1 201 OK

Content-Type:
application/vnd.com.nsn.cumulocity.deviceCredentials+json;ver=...
Content-Length:

mfjm = = 10

"id" : "0000000017b769d5",
"self" : "<<URL of new request>>",

"tenantId" : "test",
"username" : "device 0000000017b769d5",
"password" : "3rasfstdswfa"

The device can now connectto Cloud of Things usingthe tenant D, username and password.

Note: If the device does not receive credentials, it will not move to step 1 according to the above-mentioned process
diagram. For further information please contact m 2m-hardware-support@telekom.de.

3.2.2. STEP 1: CHECKIF THE DEVICE IS ALREADY REGISTERED

TheuniquelD ofthe deviceis also used for registering the device in the inventory. The registration is carried out using the
Identity API. In the Identity API, each managed object can be associated with multiple identifiers distinguished by type.
Typesare, forexample, "c8y_Serial' for a hardware serial, "c8y_MAC" foraMAC address and "c8y_IMEI" for an IMEI.

To checkifa deviceisalready registered, use a GET request on the identity APl using the device identifierand itstype. The
following exam ple shows a check for a Raspberry Pi with hardware serial "000000001 7b769d5".

GET /identity/externallds/c8y Serial/raspi-0000000017b769d5 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/vnd.com.nsn.cumulocity.externalId+json;
charset=UTF-8; ver=0.9

{
"externalId": "raspi-0000000017b769d5",
"managedObject": {
"id": "2480300",
"self": "https://.../managedObjects/2480300"
b
"self": "https://.../identity/externallds/c8y Serial/raspi-
0000000017b769d5",

"type": "c8y Serial"
}

Note that while MAC addresses are guaranteed to be globally unique, serial numbers for hardware may overlap across
differenthardwares. Hence, in the above exam ple, we prefixed the serial number with a " raspi-".

Inthis case, the device is already registered and a status code of 200 isreturned. In the response, a URL to the devicein the
inventoryisreturned in "managedObjectself'. This URL can be used to work with the device lateron.

If adeviceis notyet registered, a 404 status code and an error message is returned:

GET /identity/externallds/c8y Serial/raspi-0000000017b769d6 HTTP/1.1

HTTP/1.1 404 Not Found

Content-Type: application/vnd.com.nsn.cumulocity.error+json; charset=UTF-
8;ver=0.9

{

"error": "identity/Not Found",

mailto:m2m-hardware-support@telekom.de
http://cumulocity.com/guides/reference/identity

|
3.2.3. STEP 2: CREATE THE DEVICE IN THE INVENTORY

If Step 1 above indicated that no managed object representingthe device exists, create the managed object in Cloud of
Things. The managed object describesthe device, both itsinstance and metadata. Instance dataincludes hardware and
software information, serial numbers, and device configuration data. Metadata describes the capabilities of the devices,
includingthe supported operations.

To create a managed object,issue a POST request on the managed objects collection inthe Inventory API. The following
example creates a Raspberry Piusing the Linuxagent:

EgE B N 12

"name": "RaspPi BCM2708 0000000017b769d5",

"owner": "admin",

"self": "https://.../inventory/managedObjects/2480300",

"type": "c8y Linux",
"c8y IsDevice": {},

"assetParents": {
"references":

"self": "https://

o
"childAssets": {
"references":

"self": "https://

o
"childDevices": {
"references":

"self": "https://

b

"deviceParents":
"references":
"self":

. ../inventory/managedObjects/2480300/assetParents"

. ../inventory/managedObjects/2480300/childAssets"

. ../inventory/managedObjects/2480300/childDevices"

"https://.../inventory/managedObjects/2480300/deviceParents"

}
}

The exam ple above containsa number of metadataitem s for the device:

"c8y_lsDevice" marks devicesthat can be managed using Cloudof Things' Device Management.
"com_cumulocity_model_Agent" marks devicesrunninga Cloud of Things agent. Such deviceswill receive all
operationstargeted to themselves and their children for routing.

"c8y_SupportedOperations" states that this device can be restarted and configured. Inaddition,itcan carry out

software and firmware updated.

If the device could be successfully created, a status code of 201 isreturned. Ifthe original request contains an "Accept"

header as in the exam ple, the complete created objectisreturnedincludingthe ID and URL to reference the objectin future

requests. The returned objectalso includes referencesto collections of child devices and child assetsthat can be used to
add children to the device (see below).

3.2.4.

STEP 3: REGISTER THE DEVICE

After the new device has been created, it can now be associated with its built-in identifier as described in Step 1. This
ensuresthatthe device can find itselfin Cloud of Things after the next power-up.

Continuing the above exam ple, we would associate the newly created device "2480300" with its hardware serial number:

POST /identity/globallds/2480300/externallds HTTP/1.1
Content-Type: application/vnd.com.nsn.cumulocity.externalIld+json
Accept: application/vnd.com.nsn.cumulocity.externalld+json

i..

"type" : "c8y Serial",
"externalId" : "raspi-0000000017b769d5"

}

HTTP/1.1 201 Created

13

Content-Type:
application/vnd.com.nsn.cumulocity.externalld+json;charset=UTF-8;ver=0.9

{
"externalId": "raspi-0000000017b769d5",
"managedObject": {
"id": "2480300",
"self": "https://.../inventory/managedObjects/2480300"

b
"self": "https://.../identity/externallds/c8y Serial/raspi-

0000000017b769d5",
"type": "c8y Serial"
}

3.2.5. STEP 4: UPDATE THE DEVICE IN THE INVENTORY

If Step 1 above returned that the device was previously registered already, we need to make sure that the inventory
representation of the device is up to date with respect to the current state of the actual device. For this purpose, a PUT
request is sent to the URL of the device in the inventory. Note that only fragments that can actually change need to be
transmitted. (See Cloud of Things' domain modelfor more information onfragments.)

Forexample, the hardware information of a device will usually notchange, butthe software installationmay change. So it
may make senseto bring the software information inthe inventory up to the latest state after a reboot ofthe device:

PUT /inventory/managedObjects/2480300 HTTP/1.1
Content-Type: application/vnd.com.nsn.cumulocity.managedObject+json

{
"c8y Software": {
"pi-driver": "pi-driver-3.4.6.jar",
"pidj-gpio-extension": "pi4dj-gpio-extension-0.0.5.jar"

}

HTTP/1.1 200 OK

Do notupdatethe name ofadevice from an agent!

An agentcreates a default name for a device so thatit can be identified in the inventory, but users shouldbe able to editthis
name or update it with information from theirasset management.

3.2.6. STEP &5: DISCOVER CHILD DEVICES AND CREATE OR UPDATE THEM IN
THEINVENTORY

Depending on the complexity of the sensor network, devices may have child devices associated with them. Agood example
is home automation: You often have ahome automation gateway that installs a multitude of different sensorsand controls
installed in variousrooms ofthe household. The basic registration of childdevicesis similar to the registration of the main
device up to the fact, that child devices usually do not run an agent instance. To link a device with a child, send a POST
requestto the child devices URL thatwas returned when creating the object (see above).

Forexample, assume a child device with the URL "httpsy//.../inventory/managed Objects/2543801" has already been
created. To link this device with its parent, issue:

POST /inventory/managedObjects/2480300/childDevices HTTP/1.1

mfjm = = "

Content-Type:
application/vnd.com.nsn.cumulocity.managedObjectReference+json
{ "managedObject" : { "self"
"https://.../inventory/managedObjects/2543801" } }

HTTP/1.1 201 Created

Finally, devices and references can be deleted by issuing a DELETE request to their URLs. For example, the reference from
the parentdeviceto the child devicethat we just created can be removed by issuing:

DELETE /inventory/managedObjects/2480300/childDevices/2543801 HTTP/1.1

HTTP/1.1 204 No Content

Thisdoes notdelete the device itself in the inventory, only the reference. To delete the device, issue:

DELETE /inventory/managedObjects/2543801 HTTP/1.1

HTTP/1.1 204 No Content

Thisrequest will also delete all data associated with the device includingits registration information, measurements, alarmss,
events and operations. Usually, it is not recommended to delete devices automatically. For example, if a device has just
temporarily lostits connection, you usually do notwantto lose all historical information associated with the device.

3.3. WORKING WITH OPERATIONS

Each operation in Cloud of Things is cycled through an execution flow. When an operationis created through a Cloud of
Things application, its state is "PENDING", i.e., ithas been queued for executingbut it hasn't executed yet. When an agent
picks up the operation and starts executing it, it marksthe operations as"EXECUTING" in Cloud of Things. The agent will
then carry outthe operation on the device orits children (forexamples, it will restartthe device, orseta relay). Then it will
possibly update the inventory reflecting the new state of the device or its children (e.g., it updates the current state of the
relayin the inventory). Then the agentwill mark the operationin Cloudof Things aseither "SUCCESSFUL" or "FAILED",

potentially indicating the error.
*

The benefit of this execution flowisthat it supports devicesthat are offline and temporarily out of coverage. It also allows
devicesto supportoperationsthat require arestart - such as afirmware upgrade. After the restart, the device needsto know
whatit previously did and hence needsto query all "EXECUTING" operations and see if they were successful . Also, it needs
to listen what new operations may be queued for it.

3.3.1. STEP 6: FINISH OPERATIONS AND SUBSCRIBE

To clean up operationsthatare still in "EXECUTING" status, query operations by agentID and status. In our example, the
requestwould be:

mfjm = = 5

Therestart seemsto have executed well - we are back after all. So let's set the operation to "SUCCESSFUL".

Then, listen to new operations created in Cloud of Things. The mechanism for listening to real-time datain Cloudof Things
is described in Real-time notificationsand is based on the standard Bayeux protocol. First, ahandshake is required. The
handshaketells Cloud of Things what protocols the agent supports for notifications and allocates a clientID to the agent.

EgE B N 16

http://cumulocity.com/guides/reference/real-time-notifications

"clientId": "139jhm07uldlry92£fdl6e3rmg2c",
"minimumVersion": "1.0",
"successful": true

}H]

Afterwards, the device respectively the agent needsto subscribe to notifications for operations. Thisisdoneusing a POST
request with the ID of the device as subscription channel. In our example, the Raspberry Pi runs an agent and has ID
2480300:

POST /devicecontrol/notifications HTTP/1.1
Content-Type: application/json
[{
"id": "2",
"channel": "/meta/subscribe",
"subscription": "/2480300",
"clientId":"139jhm07uldlry92£fd163rmg2c"
}H]

HTTP/1.1 200 OK
[
"id" :"2",
"channel": "/meta/subscribe",

"subscription": "/2480300",
"successful": true,

Finally, the device connects and waits for operationsto be sentto it.

POST /devicecontrol/notifications HTTP/1.1
Content-Type: application/json

[

"id": "3",
"connectionType": "long-polling",
"channel": "/meta/connect",

"clientId": "139jhm07uldlry92fdl 63rmg2c”
This request will hang until an operation is issued, i.e. the HTTP server will not answer immediately, but wait until an
operation isavailable forthe device (long polling).
Note that there might have been operations that were pending before we subscribed to newincoming operations. We need

to query these still. This is done after the subscription to not miss any operations between query and subscription. The
technical handlingisjustlike previously describedfor "EXECUTING" operations, but using "PENDING" instead:

GET /devicecontrol/operations?agentId=2480300&status=PENDING HTTP/1.1

3.4. CYCLE PHASE

mfjm = = 17

3.4.1, STEP 7: EXECUTE OPERATIONS

Assume nowthatan operation isqueued forthe agent. Thiswill make the long polling request that we issued above return
with the operation. Here is an exam ple of a response with a single configuration operation:
HTTP/1.1 200 OK
[
"id": |l139",
"data": {
"creationTime" :"2013-09-04T10:53:35.128+02:00",
"deviceId": "2480300",
"id": "2546600",
"self": "https://.../devicecontrol/operations/2546600",
"status": "PENDING",
"description": "Configuration update",

"c8y Configuration": { "config": "#Wed Sep 04 10:54:06 CEST
2013\n..." }

b
"channel™: "/2480300"

Fo A
"id": Il3|l,
"successful": true,
"channel": "/meta/connect"

When the agent picks up the operation, it setsitto "EXECUTING" state in Cloud of Things usinga PUT request (see above
example for"FAILED"). It carries outthe operation on the device and runs possible updates ofthe Cloud of Things inventory.
Finally, it sets the operation to "SUCCESSFUL" or"FAILED" depending on the outcome. Then, it will reconnect again to
"/ devicecontrol/natifications" as described above and wait for the next operation.

The device should reconnect withinten secondsto the serverto notloose queued operations. Thisisthetimethat Cloud of
Things buffers real-time data. The interval can be specified uponhandshake.

3.4.2. STEP 8: UPDATE INVENTORY

The inventory entry of a device usually represents its current state, which may be subject of continuous change. As an
example, consider a device with a GPS chip. That device will keep its current location up-to-date in the inventory. At the
sametime, itwill reportlocation updates as well as event to maintain atrace ofits locations. Technically, such updates are
reported with the same requests as shown in Step 4.

3.4.3. STEP 9: SEND MEASUREMENTS

To create new measurementsin Cloud of Things, issue a POST request with the measurement. The example below shows
howto create a signal strength measurement.

POST /measurement/measurements HTTP/1.1
Content-Type: application/vnd.com.nsn.cumulocity.measurement+json

{
"source": { "id": "2480300" 1},
"time": "2013-07-02T16:32:30.152+02:00",
"type": "huawei E3131SignalStrength",

mfjm = = 18

3.4.4. STEP 10: SEND EVENTS

Similar, use aPOST request for events. The following example shows alocation update from a GPS sensor.

Notethat all datatypes in Cloud of Things can include arbitrary extensionsin the form of additional fragments. In this case,
the event includes a position, but also self-defined fragments can be added.

3.4.5. STEP 11: SEND ALARMS

Alarms represents eventsthat mostlikely require humaninterventionto be solved. Forexample, iftthe battery in a device
runsoutofenergy, someone hasto visitthe device to replace the battery. Creating an alarm istechnically very similar to
creating an event,

Efjm B =m 09

However, you most likely should not create an alarm for a device, if there is a similar alarm already active in the system.
Creating many alarms may flood the user interface and may require users to manually clear all the alarms. Thisis an
exam ple for findingthe active alarms of our Raspbery Pi from above:

GET /alarm/alarms?source=2480300&status=ACTIVE HTTP/1.1

In contrast to events, alarms can be updated. Ifan issueis resolved (e.g., the battery was replace, power wasrestored), the
corresponding alarm should be automatically cleared to save manualwork. This can be done through a PUT request to the
URL of the alarm. In the above exam ple for creating an alarm,we used an "Accept" headerto getthe URL ofthe new alarm
in the response. We can use thisURL to clearthe alarm:

PUT /alarm/alarms/214600 HTTP/1.1
Content-Type: application/vnd.com.nsn.cumulocity.alarm+json

{
"status": "CLEARED"

}

HTTP/1.1 200 OK

If you are uncertain on whetherto send an event or raise an alarm, you can simply just raise an eventand letthe user decid e
with a CEL ruleifthey wantto convertthe eventinto an alarm.

4. APPLICATION DEVELOPMENT

4.1. OVERVIEW

In this section, we are touching some of the basic use cases in using the Cloud of Things REST APIs for application
development. Typically,you need to:

o Register assets

e Linkdevicesto assets

e Synchronize assets with external systems
e Queryparticular capabilities

o Queryreadingsfrom sensors

e Send operationsto devices

e Listen forevents.

4.2. REGISTER ASSETS

Assets are the objects that your business and your application focuses on. For example, assets might be buildings and
roomsifyour business centers aroundbuilding management or home automation. Or they might be routes and machines, if

your businessisabout servicing machines.
Assets are stored in the inventory alongwith the devices, butthey often have an own structure independent of devices. You

create assets by POSTing them to the collection of managed objects in the inventory. For example, to createanewroom in
the inventory:

EgE B N 20

http://cumulocity.com/guides/reference/cumulocity-event-language

If the device could be successfully created, a status code of 201 is returned. If the original request contains an "Accept"
headerjustlike in the exam ple, the complete created objectis returned including the ID and URL to referencethe object in
future requests. The returned object also includes references to collections of child devices and child assets that can be
used to add children to the device.

For example, assuming that we have also created a room, and that room's "self' property is
"https://.../inventory/managedObijects/2549700". To link the room to the building, POST to the child assets collection of the
building (seethe "self' property of "childAssets" above):

Now guerying the buildingagain shows thatthe room has been registered as child of the building:

mfjm = = o1

https://.../inventory/managedObjects/2549700

GET /inventory/managedObjects/2549800 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/vnd.com.nsn.cumulocity.managedObject+json;
charset=UTF-8; ver=0.9

i..

"owner": "admin",
"id": "2549800",
"self": "https://.../inventory/managedObjects/2549800",

"childAssets": {
"references": [
{

"managedObject": {
"id": "2549700",
"name" : "Room 042",
"self": "https://.../inventory/managedObjects/2549700"

}

"self":
"https://.../inventory/managedObjects/2549800/childAssets/2549700"
}
1,
"self": "https://.../inventory/managedObjects/2549800/childAssets"

4.3. LINK DEVICES TO ASSETS

Just like you link assets to other child assets, you can link assets also to devices that monitor and control the asset. For
example, assume that you have a light sensor installed in the room, and that light sensor has the URL
"https://../inventory/managedObjects/2480500". POSTto the "childDevices" of the room as follows:

POST /inventory/managedObjects/2549700/childDevices HTTP/1.1
Content-Type:
application/vnd.com.nsn.cumulocity.managedObjectReference+json

{ "managedObject" : { "self"
"https://.../inventory/managedObjects/2480500" } }

HTTP/1.1 201 Created

4.4, SYNCHRONIZE ASSETS WITH EXTERNAL SYSTEMS

Often, Cloud of Things will not be the only IT system dealing with a company's asset. The technical procedure for
synchronizingassets stored in external IT systemsis exactly the same asthe procedure used for registering devices:

o Use theldentity APl to linkthe asset ID of the external IT system to the asset ID of Cloud of Things

e Use thelnventory APl to create or update the assets in Cloud of Things' inventory based on the external system's
data.

4.3. QUERY PARTICULAR CAPABILITIES

To decouple applications from the specifics of particular types and makes of devices, applications can use so-called
fragmentsto querythe inventory. For example, to find all managed objects having a location, use

mfjm = = 2

https://.../inventory/managedObjects/2480500
http://cumulocity.com/guides/rest/device-integration#device_registration_and_inventory_synchronization

Now, you can, forexample, place the objectin amap.
Querying the"/platform" resource will show you further possibilities for queryingyour d ata (see the Introduction).
Notethat queries do not necessarily return all query results at once, butonlya"page" ofthe result. For more information on

paging, see the Section Queryresult paging. The optional parameter "with TotalPages" will make the query contain fullpage
statistics at the expensive of slightly slower performance.

4.6. QUERY READINGS FROM SENSORS

Similar to the inventory, you can also query for particular sensor readings. For example, let's query the light measurements of
the past month (from the time of writing this text):

EgE B N 03

http://cumulocity.com/guides/rest/introduction
http://cumulocity.com/guides/reference/rest-implementation

4.71. SEND OPERATIONS TO DEVICES

To trigger an operationon adevice, POST the operation to the Device Control API. The following example restarts the device
with the ID "2480300" (whichisthe Raspberry Pithat we previously integrated):

The POST command returns immediately when the operation has been queued for the device. The actual operation
executes asynchronously. Since we added the optional "Accept" header in the exam ple request, we will getthe full queued

operation in the response including its URL in the "self" property. Usinga GET on that URL, you can check the current state
of execution ofthe operation:

EgE B N o

http://cumulocity.com/guides/reference/device-control
http://cumulocity.com/guides/rest/device-integration

HTTP/1.1 200 OK

Content-Type: application/vnd.com.nsn.cumulocity.operation+json;
charset=UTF-8; ver=0.9

{
"status": "PENDING",

A state of "PENDING" means here thatthe device has notyet picked up the operation. "EXECUTING" meansthatthe device
is in the process of executing the operation. Finally, "SUCCESSFUL" or "FAILED" indicate that the operationis completed.

4.8. LISTEN FOR EVENTS

Besides querying the Cloud of Things data store, you can also process and receive eventsin real-time as described in Real-
time processing in Cloud of Things. For example,assum e that you would like to display real-time location updatesin amap.
Use the administration user interface (or the REST API) to create anew rule module "myRule";

select *
from EventCreated e
where e.event.type = "c8y LocationUpdate";

If you have adevicethat sendslocation updates, you should see them immediately in the user interface. To receivethem in
your own REST client, you use the Notification APl to subscribe to them. The APl is based on the Bayeuxprotocol. First, a
handshake is required. The handshake tells Cloud of Things what protocols the client supports for notifications and
allocatesa clientID to the client.

POST /cep/notifications HTTP/1.1
Content-Type: application/json

[

"id": "l",

"supportedConnectionTypes" : ["long-polling"],
"channel": "/meta/handshake",

"version": "1.0"

b

HTTP/1.1 200 OK

[

"id": "l",

"supportedConnectionTypes" : ["websocket","long-polling"],
"channel": "/meta/handshake",

"version": "1.0",

"clientId": "71fjkmy0495rxrkfcmpOmhcevl",
"minimumVersion": "1.0",
"successful": true

}H]

After the handshake, the client needs to subscribe to the output ofthe above rule. Thisisdone usinga POST request with
the module name andthe statement name as subscription channel. In our example, we used the module name "myRule"
and did notgive anameto the "select" statement ("@Name(")"), so the subscription channel is"/ myRule/*"

POST /cep/notifications HTTP/1.1
Content-Type: application/json

EgE B N 05

http://cumulocity.com/guides/concepts/realtime
http://cumulocity.com/guides/concepts/realtime
http://cumulocity.com/guides/reference/real-time-statements
http://cumulocity.com/guides/reference/real-time-notifications

Finally, the clientconnects and waits for eventsto be sent to it.

Thisrequestwill hang until an operation isissued. Here is an example of aresponse with asingle location update:

26

5. USING SMARTREST

o.1. OVERVIEW

The Cloud of Things REST APIs provide you with a generic Internet of Things (loT) protocol thatis simple to use from most
environments. It can be ad-hoc adapted to any loT use case and uses standard Internet communication and security
mechanisms. While this is a great leap forward over tailored loT protocols with proprietary technologies, it poses some
challengesto very constrained environments such as low-end microcontrollers or low-bandwidth communication channels.

Forthese environments, Cloudof Things offersthe so-called "SmartREST" protocol. SmartREST combines the benefits of
standard technology and tailored protocols:

e [t continuesto work on any network by using standard HT TP technology

e [tsupportsHTTP authentication andencryption

o [tstill gracefullyhandles protocol versioning

e lIts network traffic usage is close to custom-optimized protocols by transferring pure payload data during normal
operation

e [tisbased on CSV(comma separated values) and hence is easyto handle from C-based environments

e |t supportsserver-generated timestamps for devices without clocks

In the next section, we will discussthe concepts behind SmartREST and the basic protocol thatisused. SmartREST is based
on separating metadata from payload data by using so-called templates, which are then described. Finally,we showhow to
send and receive data using SmartREST. For a detailed description ofthe protocol, see the SmartREST reference.

5.2. HOW DOES SMARTREST WORK?

Theimage belowillustrates how SmartREST works. Devices and other clients connectto a dedicated SmartREST endpoint
on Cloud of Things and send their data in rows of comma-separated values. These rows are expanded by Cloud of Things'
SmartREST proxy into standard Cloud of Things REST API requests. Similar, responses from Cloud of Things are
compressed bythe proxy from theiroriginal JSON format into comma-separated values before sending them back to the
device.

SmartREST
SmartREST

Device_1.0 Clo.ud of
I; G ' ibigs

How can Cloud of Things interpret comma-separated values into meaningful RESTrequests? For that purpose, devices
register templates with Cloud of Things. The tem plates containthe expanded REST requests together with placeholders into

EgE B N 07

http://cumulocity.com/guides/reference/smartrest

which the Cloud of Things SmartREST proxy consecutively insertsthe comma-separate values. For responses, the tem plates
describe which valuesto pick from the structured REST response to construct comma-separated values.

Tem plates are associated with software or firmware versions of a device. Usually, a particularimplementationofadevice or
application can onlyissue a particular set of well-defined types of requests. All devices with the same implementationshare
the same set of request types. Hence, the templates can be defined at implementation time. To make the templates
available to Cloud of Things, the first device with a particular implementation will send its tem plates and makes them
available for usage byall similar devices.

This process is illustrated below. Assume a device with an implementation version "Device_1.0" starts communicating
through SmartREST. After retrieving its credentials, the device will ask the SmartREST proxy if its tem plate is already known.
If thetemplateisnotfound on the server, the device will send itstem plate in asingle static text requestto Cloud of Things.
Oncethisprocedure hasbeen carried out, all similardevices using that tem plate can start communicating using SmartREST

withoutre-sendingthe tem plate to the server.

SmartREST

“Device_1.0" known?

404 Not found

“Device_1.0" Templates

Data

The example also roughly illustrates the translation process. In "Template 1", "%%" is a placeholder to be filled by the
SmartREST proxy. "time" is filled with a server-side timestamp (see below). The remaining placeholders are filled with
requestdata. Theline"1,200,20.5" inthe example request isinterpreted as follows:

e Thefirstcolumn referencesthetemplate to be used, in thiscase Template 1.
e "200"refersto thefirst free placeholderin thetemplate, in this case the ID in the "source" element(the ID of the

devicethat sendsthe measurement.)
e "20.5"refersto the second free placeholder inthe template, here the value ofthe tem perature measurement.

5.3. THE BASIC SMARTREST PROTOCOL

The basic structure ofall SmartREST requestsis as follows:

e Allrequests are POST requeststo the endpoint"/s", regardless of what the requests finally translate to.

e Thestandard HTTP "Authorization" header is used to authenticate the client.
An additional "X{d:" header is used to identify the implementation ofthe client, either as device type (such as
"Device_1.0")orasan identifier returned by the tem plate registration process.

e Arequestbodycontainsrows oftextin comma-separated value format. Each row correspondsto onerequest to
the standard Cloud of Things REST API.

e Theresponseisalways"200 OK",

mfjm = = 28

e Theresponse bodyagain contains rows of comma-separated values. Arow correspondsto aresponse from the
Cloud of Things REST APl on a particular request.

Using the above exam ple, a SmartREST request would be asfollows:
POST /s HTTP/1.1
Authorization: Basic

X-Id: Device 1.0

1,200,20.5

Andthe correspondingresponse would be;

HTTP/1.1 200 OK
Content-Length: 6

20,0

To match the requests and responses, a response line contains, next to the error code, the line of the request that the
response answers. In thisexample, "20" indicates"OK" and "0" refersto the firstline of the request.

5.4, HOW ARE TEMPLATES REGISTERED?

As described above, aclientusing SmartREST will first ask if its SmartREST tem plates are already known to the server. This
is done with an empty SmartREST request:

POST /s HTTP/1.1

Authorization: Basic
X-Id: Device 1.0

If the device implementation is known, the response will return an ID that can be used as "shorthand" in the "X-Id" header of
later requests.

HTTP/1.1 200 OK

20,<id>

If the device implementation isunknown, the response will be:

HTTP/1.1 200 OK

40,"No template for this X-ID"

In this case, create all tem plates used in your device implementation.
POST /s HTTP/1.1
Authorization: Basic

X-Id: Device 1.0

10,1,POST, /measurement /measurements, application/vnd.com.nsn. cumulocity.meas
urement+json,, $%,NOW UNSIGNED NUMBER,{ "time": "%%", "type": ... }

mfjm = = 29

Inthisexample, " 10" refersto arequesttemplate (whereas" 11" would refer to aresponse template). The tem plate is number
"1" so SmartREST requests using thistem plate have a" 1" intheir first column. The tem plate refersto a"POST" request to
the endpoint "/measurement/ measurements" with a content type of
"application/vnd.com.nsn.cumulocity.measurement+json”. The placeholder used inthe template is"%%". The placeholders
are atime stamp ("NOW"), an unsigned numberand a general number. Finally, the lastcolumn contains the body of the
requestto be filled in asent.

0.5. HOW ARE RESPONSES HANDLED?

The above example illustrated the handling of requests and request templates. For responses, JSONPath expressions
translate Cloud of Things REST responsesinto CSV. Assume, for exam ple, a device has adisplay and can showamessage
onthedisplay. An operation to update the message would look like this:

{
"c8y Message": {
"text": "Hello, world!"

o

"creationTime": "2014-02-25T08:32:45.435+01:00",
"deviceId": "8789602",

"status": "PENDING",

Ontheclientside, the device mainly needsto knowthe textto be shown. In JSONPath, the "text" property is extracted using
the following syntax:

$.c8y Message.text

In this syntax, "$" refersto the root ofthe data structure and "." selects an element from a data structure. For more options,
please consultthe JSONPath reference.

A device usually queries for all operations that are associated with it and thatare in pending state. Thestandard Cloud of
Thingsresponseto such aqueryis:

{
"operations": [
{
"c8y Message": {
"text": "Hello, world!"

I
"creationTime": "2014-02-25T08:32:45.435+01:00",

"deviceId": "8789602",
"status": "PENDING",

il
"c8y Relay": {

That is, the response contains a list of operations, and these operations can have different types. To work with such a
structure, usethe following response tem plate:

EgE B N 30

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/

11,2,$.operations, $.c8y Message, $.c8y Message. text

Thismeans, value by value:

e 11:Thisisaresponsetemplate.

e 2:lthasNumber?2.

o S$.operations: Theresponseisalistand thelist's propertyis "operations".

e $.c8y_Message: Thistem plate appliesto responses with the property " c8y_Message".
o $.c8y_Message.text: Thetext will be extracted from the message and will be returned.

The SmartREST clientwill thus get the following response:

HTTP/1.1 200 OK

2,0,"Hello, world!"

Thatis, the response was created using Template 2, the tem plate to translate display message operations. The response
refer to thefirst request sent. The actual message to set is"Hello, world!",

mfjm = = 31

